Introduction
In this example, we will try to solve the phase-field fracture model which is implemented based on Prof. Miehe's Model.
Model
In this model, the damage phase is described by an order parameter \(d\) which varies smoothly from 0 (undamaged case) to 1 (fully damaged case). Therefore, the system free energy can be read as follows: $$ \begin{equation} \psi=\psi_{d}+\psi_{e} \label{eq:psi} \tag{1} \end{equation} $$ where \(g(d)\) is the degradation function, and the damage phase free energy \(\psi_{d}\) is given as follows: $$ \begin{equation} \psi_{d}=\mathcal{G}_{c}(\frac{d^{2}}{2l}+\frac{l}{2}\lvert\nabla d\rvert^{2}) \label{eq:psi-d} \tag{2} \end{equation} $$ with \(\mathcal{G}_{c}\) and \(l\) being the critical energy release rate and the length scale parameter, respectively.
The elastic free energy can be defined as follows: $$ \begin{equation} \psi_{e}=g(d)\psi_{e}^{+}+\psi_{e}^{-} \label{eq:psi-e} \tag{3} \end{equation} $$ where $$ \begin{equation} \psi_{e}^{+}=\frac{\lambda}{2}\langle\mathrm{tr}(\mathbf{\varepsilon})\rangle_{+}^{2}+\mu \mathrm{tr}[\mathbf{\varepsilon}_{+}^{2}] \label{eq:psi-e-positive} \tag{4} \end{equation} $$
and $$ \begin{equation} \psi_{e}^{-}=\frac{\lambda}{2}\langle\mathrm{tr}(\mathbf{\varepsilon})\rangle_{-}^{2}+\mu \mathrm{tr}[\mathbf{\varepsilon}_{-}^{2}] \label{eq:psi-e-negative} \tag{5} \end{equation} $$
Here, \(\lambda\) and \(\mu\) are the lame constant and shear moduli, respectively. The positive and negative bracket operators are given as follows: $$ \begin{equation} \langle x\rangle_{+}=\frac{x+|x|}{2}\ ,\quad \langle x\rangle_{-}=\frac{x-|x|}{2} \label{eq:bracket} \tag{6} \end{equation} $$
Thus the stress can be defined as follows: $$ \begin{equation} \mathbf{\sigma}=\frac{\partial\psi}{\partial\mathbf{\varepsilon}} =g(d)[\lambda\langle\mathrm{tr}[\mathbf{\varepsilon}]\rangle_{+}\mathbf{I}+2\mu\mathbf{\varepsilon}_{+}]+[\lambda\langle\mathrm{tr}[\mathbf{\varepsilon}]\rangle_{-}\mathbf{I}+2\mu\mathbf{\varepsilon}_{-}] \label{eq:stress} \tag{7} \end{equation} $$
The governing equaitons for this model are list below: $$ \begin{equation} \mathbf{\nabla}\cdot\mathbf{\sigma}=\mathbf{0} \label{eq:stress-equilibrium} \tag{8} \end{equation} $$ and $$ \begin{equation} \eta\frac{\partial d}{\partial t}=2(1-d)\mathcal{H}-\frac{\mathcal{G}_{c}}{l}(d-l^{2}\Delta d) \label{eq:damage-equation} \tag{9} \end{equation} $$ where \(\eta\) is the viscosity coefficient. The history variable \(\mathcal{H}\) is calculated as follows:
Input file
In the example/pffracture folder, there are several geo
file, which can be used to generate the msh
mesh file for your simulation. Before we start, you should have the mesh file.
Mesh
In this case, we'll import the mesh from gmsh
, which can be done as follows:
[mesh]
type=gmsh
file=sample.msh
[end]
Here, you should use gmsh to generate the related msh file!
Dofs
Next, you need to define the dofs, it should be \(d\), \(u_{x}\), and \(u_{y}\) for 2d case, and \(d\), \(u_{x}\), \(u_{y}\), and \(u_{z}\) for 3d case. The [dofs]
block should looks like:
[dofs]
name=d ux uy
[end]
or
[dofs]
name=d ux uy uz
[end]
Here, the sequence of your dofs
name matters !!!
[elmts] and [mates]
The governings in Eq.\(\eqref{eq:stress-equilibrium}\) and Eq.\(\eqref{eq:damage-equation}\) can be implemented by using the following elmts
:
[elmts]
[myfracture]
type=miehefrac
dofs=d ux uy
mate=myfracmate
[end]
[end]
where type=miehefrac
tells AsFem, our users want to call the phase-field fracture model.
For the material calculation, as mentioned before, several parameters are required, i.e., \(E\), \(\nu\) for the Youngs modulus and poisson ration, \(\eta\), \(\mathcal{G}_{c}\), and \(l\) for the damage evolution. Therefore, the related material
block can be given as follows:
[mates]
[myfracmate]
type=miehefracmate
params=121.15 80.77 2.7e-3 0.012 1.0e-6
// lambda mu Gc L viscosity
[end]
[end]
It should be mentioned that, the de-coupled or staggered solution can be done easily by introducing the usehist
parameter as follows:
[mates]
[myfracmate]
type=miehefracmate
params=121.15 80.77 2.7e-3 0.012 1.0e-6 1
// lambda mu Gc L viscosity usehist
[end]
[end]
then, your \(\mathcal{H}\) will always use the \(\mathcal{H}_{old}\) value from previous step.
boundary condition
For the tensile test, one can use the following bcs
:
[bcs]
[fixux]
type=dirichlet
dofs=ux
value=0.0
boundary=left right top bottom
[end]
[fixuy]
type=dirichlet
dofs=uy
value=0.0
boundary=bottom
[end]
[load]
type=dirichlet
dofs=uy
value=1.0*t
boundary=top
[end]
[end]
and for the shear failure test, one can use:
[bcs]
[fixux]
type=dirichlet
dofs=ux
value=0.0
boundary=bottom
[end]
[fixuy]
type=dirichlet
dofs=uy
value=0.0
boundary=bottom left right top
[end]
[load]
type=dirichlet
dofs=ux
value=1.0*t
boundary=top
[end]
[end]
Done? Yulp, all the things is done!
Run it in AsFem
Now, let's try your first phase-field fracture model in AsFem. You can create a new text file and name it as tensile.i or whatever you like. Then copy the following lines into your input file:
[mesh]
type=gmsh
file=sample.msh
[end]
[dofs]
name=d ux uy
[end]
[elmts]
[myfracture]
type=miehefrac
dofs=d ux uy
mate=myfracmate
[end]
[end]
[mates]
[myfracmate]
type=miehefracmate
params=121.15 80.77 2.7e-3 0.012 1.0e-6
// lambda mu Gc L viscosity
[end]
[end]
[nonlinearsolver]
type=nr
maxiters=15
r_rel_tol=1.0e-10
r_abs_tol=5.5e-7
[end]
[ics]
[constd]
type=const
dof=d
params=0.0
[end]
[end]
[output]
type=vtu
interval=20
[end]
[timestepping]
type=be
dt=1.0e-5
time=5.0e-5
adaptive=false
optiters=3
growthfactor=1.1
cutfactor=0.85
dtmin=1.0e-12
dtmax=1.0e-4
[end]
[projection]
scalarmate=vonMises
[end]
[bcs]
[fixux]
type=dirichlet
dofs=ux
value=0.0
boundary=left right top bottom
[end]
[fixuy]
type=dirichlet
dofs=uy
value=0.0
boundary=bottom
[end]
[load]
type=dirichlet
dofs=uy
value=1.0*t
boundary=top
[end]
[end]
[job]
type=transient
debug=dep
[end]
You can also find the complete input file in examples/pffracture/miehe-tensile.i
.
If everything goes well, you can see the following image in your Paraview: