Author: Mengmeng Li • MMlab 🔗
Introduction
In this example, we will try to solve the coupling diffusion and Allen–Cahn Fracture model.
Model
In this model, the damage phase is described by an order parameter \(d\) which varies smoothly from 0 (undamaged case) to 1 (fully damaged case). Therefore, the system free energy can be read as follows:
The fracture model follows Allen–Cahn Fracture equation: $$ \begin{equation} \frac{\partial \eta}{\partial t} = -L \frac{\delta \psi}{\delta \eta} \label{eq:AC_equation} \tag{1} \end{equation} $$
The diffusion model is list as follows: $$ \begin{equation} \frac{\partial c}{\partial t} = \nabla \cdot (D \nabla c -D c\Omega \nabla{\sigma_{h}}) \label{eq:diffusion_equation} \tag{2} \end{equation} $$ where \(\sigma_{h}\) is hrdyostatic stress.
The governing equaitons for this model are list below: $$ \begin{equation} \mathbf{\nabla}\cdot\boldsymbol{\sigma}=\boldsymbol{0} \label{eq:stress-equilibrium} \tag{3} \end{equation} $$
Input file
In the example/pffracture folder, there are several geo
file, which can be used to generate the msh
mesh file for your simulation. Before we start, you should have the mesh file.
Mesh
In this case, we'll import the mesh from gmsh
, which can be done as follows:
"mesh":{
"type":"msh2",
"file":"rect50grs.msh",
"savemesh":true
},
Here, you should use gmsh to generate the related msh file!
Dofs
Next, you need to define the dofs, it should be \(d\), \(u_{x}\), and \(u_{y}\) for 2d case, and \(d\), \(u_{x}\), \(u_{y}\), and \(u_{z}\) for 3d case. The [dofs]
block should looks like:
"dofs":{
"names":["c","d","ux","uy"]
},
"dofs":{
"names":["c","d","ux","uy","uz"]
},
Here, the sequence of your dofs
name matters !!!
elmts and mates
The governings in Eq.\(\eqref{eq:stress-equilibrium}\) and Eq.\(\eqref{eq:damage-equation}\) can be implemented by using the following elmts
:
"elements":{
"elmt1":{
"type":"diffusionacfracture",
"dofs":["c","d","ux","uy"],
"domain":["1"],
"material":{
"type":"diffusionacfracture",
"parameters":{
"stabilizer":1.0e-5,
"L":1.0e4,
"Gc":2.7e-3,
"eps":0.01,
"K":121.15,
"G":80.77,
"Cref":0.0,
"D":0.1,
"Omega": 5.65895e-02
}
}
},
The parameter type=diffusionacfracture
instructs AsFem to call the diffusion and Allen-Cahn fracture model. This example demonstrates a polycrystalline model where elmt1
represents the first grain, , with each grain assigned a different value of \(\Omega\). The complete input file is available at examples/pffracture/rect50grsdifffrac.json
.
As mentioned previously, several material parameters are essential for the calculations: the bulk modulus (\(K\)), shear modulus (\(G\)), fracture energy (\(\mathcal{G}_{c}\)), and the regularization length (\(l\), also denoted as eps
) which governs damage evolution.
boundary condition
For the tensile test, one can use the following bcs
:
"bcs":{
"fixux":{
"type":"dirichlet",
"dofs":["ux"],
"bcvalue":0.0,
"side":["left"]
},
"fixuy":{
"type":"dirichlet",
"dofs":["uy"],
"bcvalue":0.0,
"side":["bottom"]
},
"load":{
"type":"neumann",
"dofs":["c"],
"bcvalue":"-0.015",
"side":["top","right"]
}
},
Run it in AsFem
Now, let's try your first finite strain fracture model in AsFem. You can create a new text file and name it as diffusionacfracture.json
or whatever you like. A part of input file is as follows:
{
"mesh":{
"type":"msh2",
"file":"rect50grs.msh",
"savemesh":true
},
"dofs":{
"names":["c","d","ux","uy"]
},
"elements":{
"elmt1":{
"type":"diffusionacfracture",
"dofs":["c","d","ux","uy"],
"domain":["1"],
"material":{
"type":"diffusionacfracture",
"parameters":{
"stabilizer":1.0e-5,
"L":1.0e4,
"Gc":2.7e-3,
"eps":0.01,
"K":121.15,
"G":80.77,
"Cref":0.0,
"D":0.1,
"Omega": 5.65895e-02
}
}
},
...............................................................
...............................................................
},
"projection":{
"type":"default",
"scalarmate":["vonMises-stress","vonMises-strain","hydrostatic-stress"],
"rank2mate":["stress"]
},
"linearsolver":{
"type":"mumps",
"preconditioner":"lu",
"maxiters":10000,
"restarts":2600,
"tolerance":1.0e-26
},
"nlsolver":{
"type":"newton",
"maxiters":100,
"abs-tolerance":7.5e-7,
"rel-tolerance":1.0e-10,
"s-tolerance":0.0
},
"output":{
"type":"vtu",
"interval":10
},
"bcs":{
"fixux":{
"type":"dirichlet",
"dofs":["ux"],
"bcvalue":0.0,
"side":["left"]
},
"fixuy":{
"type":"dirichlet",
"dofs":["uy"],
"bcvalue":0.0,
"side":["bottom"]
},
"load":{
"type":"neumann",
"dofs":["c"],
"bcvalue":"-0.015",
"side":["top","right"]
}
},
"qpoints":{
"bulk":{
"type":"gauss-legendre",
"order":2
}
},
"timestepping":{
"type":"be",
"dt0":1.0e-6,
"dtmax":1.0e-1,
"dtmin":1.0e-12,
"optimize-iters":5,
"end-time":4.8e1,
"growth-factor":1.1,
"cutback-factor":0.85,
"adaptive":true
},
"postprocess":{
"vonMises-stress":{
"type":"nodalscalarmate",
"parameters":{
"nodeid":662,
"scalarmate":"vonMises-stress"
}
},
"uy":{
"type":"nodalvalue",
"dof":"uy",
"parameters":{
"nodeid":662
}
}
},
"job":{
"type":"transient",
"print":"dep"
}
}
Due to space constraints, only element1 is displayed here. For the complete input file, please refer to examples/pffracture/rect50grsdifffrac.json
.
If everything goes well, you can see the following image in your Paraview: